

Full Depth Reclamation

Workshop Materials

Study 0-6271-P2

PowerPoint Slides

FULL DEPTH RECLAMATION

Workshop Materials

PowerPoint Slides

By

Tom Scullion

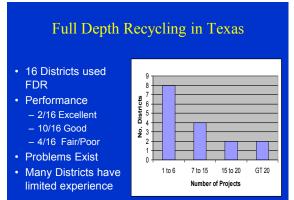
Stephen Sebesta

Cindy Estakhri

Texas Transportation Institute

(979) 845-9913

t-scullion@tamu.edu



Full Depth Reclamation Workshop Materials Study 0-6271-P2

Chapter 1 Introduction to FDR

Objectives of Project 6271

- Develop Guidelines on
 - Project Evaluation and Design
 - Formulating a mix design
 - Controlling the construction process
 - Performing quality assurance
 - Bonding of the surface
 - has led to construction delays and poor performance
- Implementation of best practices through
 - Modified specifications or control procedures

Critical Steps in the FDR Process

- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Design
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of Geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback addressing Performance problems

Pavement Evaluation Tools

1) GPR thickness variability; identify major problem areas; sampling locations

2) DCP in-site strengths of lower layers

3) FWD Strength variability; subgrade stiffness entire project

Critical Steps in the FDR Process

- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Desi
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback Addressing Performance Problems

FM 148 I Res						
Design Blend Percentages Existing RAP 50% Existing Base 50%		Sieve A	nalysis of Rase	Aggregate	FAINS	Fin 14E Fin 14E
Add Bock 0%		Sieve	Size	% Passing	2 to care tor	396 Cm 441
		1%		100	2-1	3-1
Compaction Properties		1 %	ř. –	97.6	Street B. Pr. No. 2 and Address	
Required 7.1		%		91.9]	
Moisture				81.9		
Max Dry Density 122.6		5		61.6		and the second se
		#4		37.3		Dest at mit all A property man and
Sulfate Content (ppm) Medium High		#40		18.0 n/a	-	
250 920						the state
	Perfo 2%	rmance Crit 3%	eria 4%		Limits	·····································
Dry Unconfined Compressive Strength (psi) @ 25°C (Tex-117-E)	138	3% 198	240		e Limits psi min	
Retained Unconfined Compression Strength (psi) @ 25°C (Tex-117-E)	148	220	301		ation Only	
Retained Unconfined Compressive Strength (%) of dry strength	107%	111%	125%		™• min	Markey Mark
Tube Suction Test Final Dielectric (Er) (Tex-144-E)		12			ation Only	
Un conditioned Seismic Modulus (ksi) (ASTM D 4123)	531	841	1010		ation Only 7 days	100% RAP@ 3%
	Recomment ent Content Moisture C		cement = 85 psi			

Critical Steps in the FDR Process

- 1. Assembling Background Information
- 2. NDT Evaluation and Section Breakdown
- 3. Verifying Pavement Structure and Sampling
- 4. Laboratory Mix Design
- 5. Pavement Design
- 6. Special Considerations
 - 1. Use of geogrids
 - 2. Ensuring Surface bonding
 - 3. Microcracking
- 7. Construction Quality Assurance
- 8. Feedback Addressing Performance Problems

Pulverization (Road Mixed)

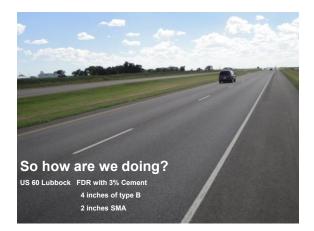
Initial

Time Limitation

cement

– 100% passing 2.5 in.

 After Mixing – Base


• 100% pass 1.75 in.

• 85% pass 0.75 in.

Subgrade60% pass No. 4

Compaction with 2 hours of adding

Chapter 2 Online Evaluation of Project Soil Conditions

SOIL PROPERTY	CONSEQUENCE
Plasticity index PI > 15	Avoid if at all possible do not mix soil into base. If unavoidable; consider lime as stabilizer
Plasticity index PI > 35	Experience has shown that stabilizer layers built on soils with high shrink swell potential can have problems with severe longitudinal cracks. Consideration should be given to incorporated geogrid into potentially problems sections
Sulfate Contents > 0.8%	Heaving problems have been documented with the use of cement and lime on sulfate rich soils. Follow TxDOT guidelines on dealing with sulfate, avoid incorporating these soils into bases
Organic Contents > 2%	Problems with pernanently stabilizing these soils. Avoid using these soils in FDR design, follow TxDOT guidelines if these soils are to be treated

Using the Web Soil Survey

- http://websoilsurvey.nrcs.usda.gov/app/
- Press the green "start WSS" button
- Define the Area of Interest (AOI)
- Use Soil Map for soil series information
- Use the Soil Data Explorer for use limitations and soil properties
 - Maps are generated and can be printed or saved

Defining Area of Interest

Defining Area of Interest

- Use Area of Interest Interactive Map to zoom/pan to desired location
- Define area with rectangle or polygo
- Polygon generally works best

Once at desired map location, activate rectangle or polygon AOI function to define the area of interest for investigation. The AOI is drawn in red.

Survey Data - Soil Map and Soil Data Explorer

Soil Map shows soil series present in AOI

- Soil Data Explorer is where to find
 - Suitabilities and Limitations for Use
 - Soil Properties and Qualities
 - Ecological Site Assessment
 - Soil Reports

Suggested Uses of Soil Data Explorer

- Under Suitabilities and Limitations:
 - View rating for Local Roads and Streets
 - Corrosion of Concrete may also be of interest

In this example limitations for local roads and streets shown. 99.4% of AOI is very limited due to low strength and/or shrinkswall

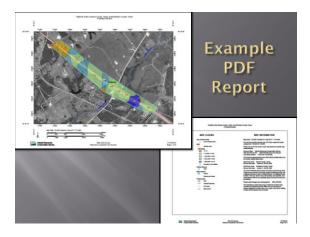
Suggested Uses of Soil Data Explorer

- Under Soil Properties and Qualities
 In Soil Chemical Properties view rating for Gypsum

 PH may also be of interest

 In Soil Physical Properties view rating for Organic Matter
 and Plasticity Index

 Surface Texture may also be of interest



In this example ratings for Gypsum are shown. Some pockets with up to 3% Gypsum are indicated.

Saving Your AOI Output

- After viewing a rating, press the "Printable Version" button above the map
 Insert any desired subtitles in the "Custom Subtitle" field
 - Press "View" in the Printable Version Options screenA PDF format is generated that can be saved

	aticity Index					
		nary by Wep Lind — Broose C				
Map out aprilat	May unit mates	Rating (percent)	Auros 10.402	Personal all Aller		
848	Service kars, 10-1 percent stopes					
08	CodeElian, 19-3 pecert riges	Della Contractione	31.0	176		
**	Notes the earth land, 2 h 1	21.0	1.0	128	Taking topological local local local and destar local from	Taxing Sea
_	percent signs		_			
×.0	Huten the sandy lasts, 5 to 8 parties of alignes	24	10	175	Description	
		10.8	81	17%	Particle man (Prix on (P2)) closed defensions, and is reliable to	
648	Spiller tearsy free sets, 110-3 percent stypes	1.0	4.0	10%		
nja.	Monton ()- (printidge)	28.7		178	the republic test and passion test of the part. It is the congruit water content in set a son writtle the diversitienties of a passion sold.	
Individual for Ball			-	-	The plants shift is the subir content that comparents to an articles mittingian	
Intelligible for Assess of 1	after call		434.5	10.0	the plastic and extended states of a said. The Apart and a the Apart States, a person by weight tasks, of the said generating the desire at which the said strang	
	Particle Index - Burner	ey by Map 2nd - Raise base	Coatto Terrer		persenting sample soon, of the bulk persons will as an all sentent the son strang from a practic to a report state.	
Map and symbol		Rating (permit)	Acres in All	Perset of AD	Solis That have a high guadeds make have a wite range of inclusion sortient in	
8+8	Security day loss, 110 3 percent signs	0.0	16.0	14.2%	where the an optimize an aparts making white a making out material posts on toward any in carees. Making make is and in calculating and in the unfield Added Companyation systems.	
bei	Service (in the Jacob States)		4.2	1226	For spart and more, bits adding a solution provided as lines provide advan-	
142	Undet ten, 255 peret riges, etablik Stabilizery Treased, 25 A	28.4	81	475	The Baldware A can usual and a tright-white indicate the strips of this abilitizes the act compression. A trightneer failed control and the strips and on the ability of the strips of the strips of the strip property on the strip the strips of the strips of the strips of the strips of the strip property.	
ne ^r	partner's special sector and a sector of an and a sector of an appendix				MR.	
5¢	Enge-Duffed test congres, 3 to 5 percent singles	28.7		10%	Rating Options	
HAD .	Hearte free earnig-loads, 3 to 0 percent aligners	PR-1	14.1	128	one street because because	
LeC	Lattor-day lean. 116-5 provet stigen		1.0	175	Aggregator United Element Element Component Parant Exist. More Element	
Lat.	Continue of the West of the Vice of the State	10.0	21.0	100	Decreatificating regree	
8-62	Scoreito fine parale inser. 1 in 1	AL 2	41	175	integrate tapet all party tas Lagar liptime Taget Range	
	percent signs, would find the base, if its 2 percent	-		100	The Destri II	
	stages, because to founded				destro Death 14	
			194.0	===	Units at tablecore in these	
ter Bulltunde for Build Tobale for Anna of S						

Chapter 3 Conditions Surveys and NDT

- What is a good FDR candidate
- Understand how NDT can help in the evaluation and design process
- · Identify other issues
 - Failed culverts
 - Edge stability problems

FDR Candidates

- Pavements with base problems
 - Inadequate thicknessClay contamination
 - Loss of stabilized layer
- Pavements not structurally adequate
- Pavements with major edge failures
- Continuing and excessive maintenance

Good FDR Candidate 4-Lane Roadways-Simple Cases

2-4 Inches HMA 10-12 inches of base Fair subgrade Rutting and Alligator in Wheel paths - major truck routes

Good FDR Candidates 2-Lane Roadways

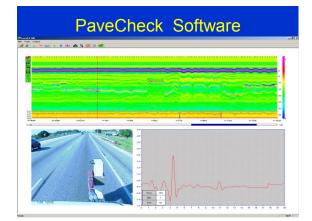
Not FDR Candidates

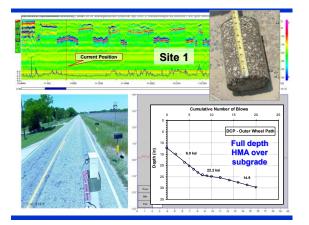
Problems restricted to HMA layer Good FWD values No base failures

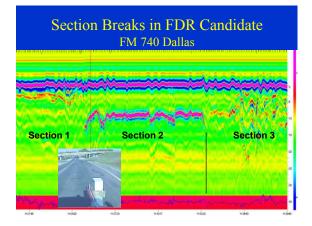
Pavement Evaluation Tools

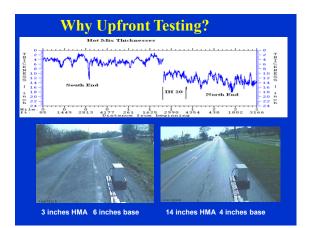
 GPR-thickness variability; identify major problem areas; sampling locations
 DCP-in-site strengths of lower layers

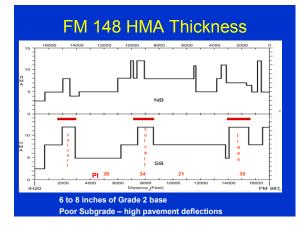
3) FWD-strength variability; subgrade stiffness entire project

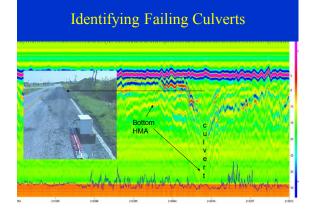



TxDOT's Ground Penetrating Radar Unit


- TTI's data acquisition and processing systems Integrated Video
- Data collected at highway speed (60 mph)
- Effective depth of penetration 20 ins
- TxDOT has 5 available units
- Measure layer thickness and locate subsurface defects







FDR Candidates

Tough Cases

9 inches HMA, 3 inches of base, PI 60 soils Lots of maintenance; variable HMA thickness No shoulders, lots of trees close to edge Traffic handling headache No foundation layer

1

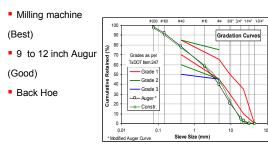
Chapter 4 Verification Coring and Sampling

- Understand what field testing is required for GPR verification
- How to obtain samples for lab testing
- Understand how to use the DCP to investigate pavement edge failures

Verification Coring and Sampling

- Sampling locations
 - Assigned based on the GPR data analysis
 - > 2-4 sampling locations per road for thickness validation
 - 1-2 sampling locations per road for lab testing
- Amount of sampled material per site
 - Sufficient for laboratory testing: ~ 10 buckets
 - On-site pavement structure evaluation: ~ 1 core and one augur (bag samples of all layers)

HMA Coring Thickness Verification and Defect Detection

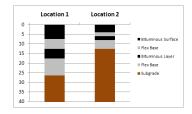


Material Sampling - Site 1

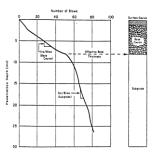
- Auguring base
- Shelby Tube sampling soils

Obtaining Samples for Lab Testing

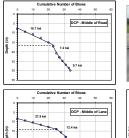
Material Sampling – Site 1


Shelby Tube samples

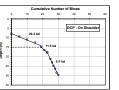
Thick HMA Sections > 4 ins Keep HMA and Base Samples Separate


Mapping Project Variability

DCP Testing

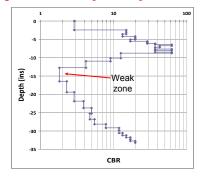


Processing DCP Data


CBR = 292 / (PR) ** 1.12 CBR California Bearing Ratio PR Penetration rate mm/blow E = 2.54 * (CBR)** 0.64 E modulus (ksi)

DCP Test Results on FM 429 (Site 2)

9.2 ksi

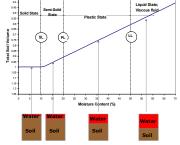


DCP on Shoulder where Edge Failures Occurring

Using the DCP to Identify Weak Layers on Shoulder

Chapter 5 Laboratory Mix Design Procedures

- Understand guidelines for determining if stabilization is required
- Be familiar with TxDOT guidelines on selecting stabilizer types
- Understand the steps required to select optimal stabilizer contents
- Be familiar with current TxDOT design criteria
- Understand what test can be run to ensure adequate surface bonding



FDR Option Selections Considerations

Objective	Base Thickening	Upgrade base to Class 1	Create a Stabilized Base
Used	 Existing base is uniform 	 Low – moderate traffic 	 Bridging over poor subgrade
When	 No widespread structural 	• Subgrade > 10 ksi	 Strengthening required
	damage	 Moisture not a concern 	 Low quality variable base/stripped HMA
	 Low to medium traffic 		 Higher Rainfall
	 Medium to Good subgrade 		 Early opening to traffic
Selection	No Stabilizer added to the	Full Texas Triaxial	
of	existing material. This is a	test (117-E), add low levels of	Use Prevailing TxDOT spec and Test Methods
Stabilizer	base thickening project,	stabilizer	(120 E, 121 E, 127E, SS3066)
	where new untreated		
	granular material is	Criteria after 10 days capillary rise	 All tests should include a retained strength on
	placed on top of existing.		moisture saturation
		1) 45 psi at 0 psi confining	
		2) 175 psi at 15 psi confining	
FPS 19	70 ksi	100 ksi	150 ksi
Moduli			
	 New base should be of 		1) Avoid cutting into high PI subgrade, if existing
	higher or equal quality		structure is thin then add new base before milling
	than existing, and		where needed
	2) Blending of existing		To avoid longitudinal cracking consider grids and
	and new base strongly		flex base overlay where the PI subgrade soils > 35
	recommended to avoid		3) Max RAP 50%
	trapping moisture in		 If lab strength > 350 psi then consider micro-
	upper layer		cracking
			5) Max Cement 4%, other stabilizer can be used

Basic Soil Moisture States

- Solid State:
- Soil stable under pressure
- Semi-Solid State:
- Soil crumbles under pressure
- Plastic State:
 - Soil deforms and remains deformed under pressure
- Liquid State:
 - Soil flows under its own weight; Viscous Fluid

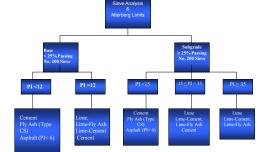
cy with Water Conten

PI Calculation

- Plastic Limit PL (Tex-105-E)
 - Lowest moisture content at which the soil can be rolled into threads 1/8th inch in diameter without the soil breaking into pieces
- Liquid Limit LL (Tex-104-E)
- Lowest moisture content at which a 0.5 inch groove of soil begin to flow together
- Plasticity Index PI (Tex-106-E)
 Range or difference between the LL and PL
 - PI = LL PL

Plastic Limit Test

Liquid Limit Test


Laboratory Assessment of the Material

- Laboratory performance evaluation
- Mix design recommendations
- Design methodologies
 - 1. Cement treatment

2. Emulsion only or Dual emulsion-cement treatment

TxDOT's Stabilization Selection Guidelines (2006)

Design Methodology

Cement treatment

- Ordinary portland cement, Type I
- > 2, 3, and 4% by weight of total dry solids
- > 7 days of moist cure (25 C and 100% R.H.)
- Tests and criteria
 - Unconfined Compressive Strength
 - ▶ Tube Suction dielectric value, ε
 - UCS after Tube Suction
 - UCS after Dunk Test
 - Seismic Modulus

* TxDOT Item 276 specification; Test method Tex-120-E

Design Methodology²

- Emulsion-cement treatment
 - + 4% of emulsion, 65% residue
 - Ordinary portland cement, Type I
 - 0, 1, or 2% of cement
 - > 2 days of hot cure (60 C) + 1 day cooling
- Tests and criteria
 - Unconfined Compressive Strength
 - Tube Suction dielectric value, ε
 - UCS after Tube Suction
 - UCS after Dunk Test
 - Seismic & Resilient Moduli

* TxDOT Special Specification No. 3066

 $\geq 150 \text{ psi}^{*}$ Report $\geq 80\% \text{ UCS}_{\text{Dry}}$ $\geq 80\% \text{ UCS}_{\text{Dry}}$ Report

Timeline 1

-

≥ 300 psi (Class L)*

≥ 175 psi (Class M)*

 \geq 100% 7D UCS_{Dry}

 \geq 100% 7D UCS_{Dry}

Report

Report

Cement treatment

Duration: about 3 weeks

Mix	No.	Tests		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	(e3-1	SM, UCS _{Dry}	1		5	M Cert		M		м	SU U	M.												
	c3-2	SM, UCS _{Dey}	2		1			M	1.1.1	м	80	M. CS												
3% cement	c3-3	TST, ε , UCS _{TST}	3	-	1	Cart	g at 35	C ar 199					e [4	a Tabe Se	e den Test	r i i Com	e 17 Seek	e : Ng 10 23	¢ [•	υ	cs	
	c3-4	$\mathrm{TST},\mathbf{e},\mathrm{UCS}_{\mathrm{TST}}$	4		1	Cart	g at 35				0.	-	e	e	a Tale Ta	e Rei Dat	e i i Cojită	r 17 See	е 1994 11	e i	e	εU	cs	
	c3-5	Dunk, UCS _{Dunk}	5	-		Carl	e # 27	C ar 1991			04	- 0	nk (8											
2% cement	∫ e2-1	UCS _{Dry}	6	-	1.5			M	5	м														
276 cement	c2-2	Dunk, UCS _{Desk}	7	-	1	Cart	9 M II	-			0	e D	ek. 15											
4% cement	∫ ¢4-1	UCS _{Dry}	8	-	1.5			M	12.0	м	S U	M.												
476 cement	04-2	$Dunk,UCS_{Dunk}$	9		1	Carl	g at 33	C ar Title			0- 0-	70	nk. CS											

Notation: c3-4 = "c" - cement, "3" - 3% cement by weight, "4" - fourth sample.

Emulsion-cement treatment

Duration: about 2 weeks

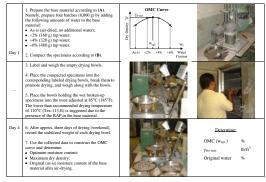
Mix	No.	Tests	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	el-l	SM, RM, UCS _{Dry}	1	Cardig at 1	erc ex	er D	754 CS																
	e1-2	SM, RM, UCS _{Dry}	2	Carlog at	erc ca	in t	104 CS																
4% emulsion	e1-3	TST, z, UCS_{TST}	2	Coring at	ere ce	-Crep	1		e i norise	e Geneline	e Capita	e 17 Set	e i i Igni Di	6		ľ	cs						
+1% cement	e1-4	TST, ε , UCS _{TST}	4	Contract		org	1		e NV SN	e Institut	e Curto	e 17 Seek	e i i	6	2	í l	cs						
	e1-5	$\mathrm{Dunk}, \mathrm{UCS}_{\mathrm{Dunk}}$	5	Cuthy at	ere 60		cs																
	e1-6	$\mathrm{Dunk}, \mathrm{UCS}_{\mathrm{Dunk}}$	6	Cavity at	erc 10		cs																

Notation: e1-6 = "e" - emulsion, "1" - 1% cement by weight, "6" - sixth sample.

Sample Preparation and Characterization

w_{opt}

- All material is spread out and air-dried overnight
- Material characterization
 - Atterberg limits analysis
 - Particle size analysis
 - Moisture-density relationship
- Specimen fabrication
 - TxDOT Test Method Tex-113-E
 - $\blacktriangleright \oslash$ 6" by 8" samples
 - + 4 layers, 10 lb hammer, 18 inch drop, 50 blows per layer
- Laboratory protocol...


A. Preparation of the Base Material for Testin

Day 1	 Thoroughly mix the material originating from a single-sampling location, spread it out on the floor, and let air-dry overnight. 	
Day 2	2. Collect representative samples of the air-dried material to determine: The baseline (air-dried) moisture content of the virgin material; The particle size gradation of the virgin material; Plasticity index of the virgin material. Plasticity index of the virgin material. Properse material baches(< R Coll 00) gb ys dafling the desired amount of water and theroughly mixing.	
Day 3	 Cover and seal each batch with foil. Weigh each covered batch and record the mass in order to monitor the weight loss due to involuntary water evaporation. Let the batches sit overnight (12 hours). Weigh each hatch to check for the possible water loss. Repletinh the evaporated mointure. 	

B. Compaction of the Base Material Specimens

Day 1	 Prepare the base material according to (A). If necessary, mix additives into the batches, following the additive specific mixing procedures. Set way the optimizent to compact the base specimens according to the Tex-113-E procedure. Weigh an empty 6'× 8.5" mold; record its mass. 	
-	5. Compact the 6° × 8° specimens in 4 layers using the standard compaction effort [Fex 1] >12; 10 h harmers; 16 in drog, 50 blows/theyer. 6. Scarify the surface of each internal layer with spatula to facilitate bonding between the compacted layers. 7. Finish off the final surface of each specimen using 10 fim Blows 6 a rankible humer.	
-	8. Weigh the compacted specimen in the mold and record their combined mass. 9. Extrude the compacted specimen from the mold using the hydraulic press. 10. Determine the height of each specimen using a ruler to the nearest 0.05 inch.	

C. Determination of the Optimum Moisture Content of the Base Material

D. Preparation of the Cement Stabilized Base Specimens

-	I. Determine the OMC of the base material according to (C). Adjust the OMC value: For the original (as-is) water content; For inclusion of centent. So relations on the original content of the original original content of (A), using the adjusted optimum moisture content.	OMC Curve
Day 1	 Calculate the desired amount of cement, defined as a percent of the total dry solids. Weigh out cement and thoroughly mix it into the wetted base material. Compact the cement-base mix according to (B). 	
Day 8	 Place the compacted specimen on the persons stone, wrap into a planic bag, and cover with another porous stone. Move the specimens into a climate chamber set at 25°C (77°F) and 100% relative humidity. Care the specimens in the chamber for 7 days. 	

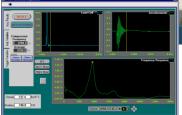
E. Preparation of the Base Specimens Stabilized with the Emulsion-Cement Mix

-	I. Determine the OMC of the base material according to (C). Z. Adjust the OMC value: For the original (a-si) water content; For inclusion of cerent; For water contained in emulsion. Prepare the base material batches according to (A), using the abased optimum motivater content.	OMC Curve	
Day 1	4. Transfer the prepared base material into the backet of an electrical mixer. 5. Calculate and weigh an appropriate amount of coment, defined as a percent by mass of the total dry tolida. 6. Add the weighed cement to the base material in the mixer and mix thoroughly.		
-	 Stake the bottle containing emulsion first. Calculate and weigh an appropriate amount of emulsion, defined as a pectre by mass <u>in addition</u> to the total day solids. Pour the weighed emulsion into the mixer in addition to the blend of the base material and cement. 		

E. Preparation of the Base Specimens Stabilized with the Emulsion-Cement Mix - CONTINUED

_	 Mix for no more than 60 ± 10 seconds. Place the loose mixture into a bowl. A fore the bended specimens into an oven and cure at 60°C (140°F) for 30 minutes. Do not mix during curing. 	
-	 Compact the cured mixtures according to (B). I.4. Place the compacted specimens on the portous stones. 	
Day 3 Day 4	 Move the specimens into a climate chamber set at 60°C (140°F). Cure the specimens in the chamber for 48 hours (2 days). Pensove the specimens from the hot chamber and cost them a 22°C (77°F) for 24 hours (1 day), but not more than 48 hours (2 days). 	

Unconfined Strength


Unconfined Compressive Strength

Seismic Modulus Test

- Free-Free Resonant Column
- Correlation with Young's modulus

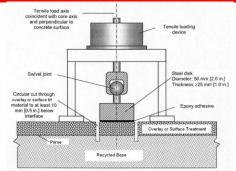
Resilient Modulus Test

- Test method: AASHTO T 307
 - Unconfined sample at 23 C
 - 200 cycles at 35 psi
 - 0.1 sec load & 0.9 sec unload

 Correlation with Young's modulus

Dunk Test

- Accelerated moisture susceptibility test
 - + 4-hour period of full submerging @ 25 C
 - Unconfined compressive strength test at the end
 - $\bullet \ UCS_{Dunk} \geq 80\% \ UCS_{Dry}$
- Conditioning of the cement treated samples
 - After curing, overnight drying is required @ 60 C
 - Followed by at least 2 hours of cooling
- Emulsion-cement samples
 - No additional conditioning


Tube Suction Test

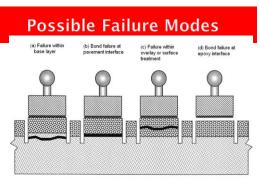
- Extended moisture susceptibility test
 - > 240-hour (10-day) period of capillary soak @ 25 C
 - Unconfined compressive strength test at the end
 - + UCS_{TST} \geq 100% UCS_{Dry}
- Sample conditioning: identical to Dunk Test

Direct Tensile Bond Test ASTM C-1583

Current TxDOT Design Strength Requirements

 Laboratory Requirements for Lines Treatment.

 Text
 Spec Limits


 Unconfined Compressive Strength (psi)
 S0 psi min as subbase; (Tex:12:E)*

 150 psi for final course of base construction "After motisture conditioning per Tex:12:E over 10 days

Laboratory Requirements for Cement Treatment.

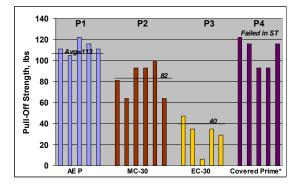
Test	Spec Limits
Unconfined Compressive Strength (psi) @ 77°F (Tex-120-E)	175 min
Retained UCS (psi) @ 77°F after Tube Suction Test	100% min
Tube Suction Test Final Dielectric (Er) and moisture content (%) (Tex-144-E)	For Information Only
Unconditioned Seismic Modulus (ksi)	For Information Only
(Draft TxDOT Method)	Tested at 7 days

Test*	Spec Limits
Unconfined Compressive Strength (psi) (SS3066)	150 min
Indirect Tensile Strength (Tex-226-F)	> 50 psi
Tube Suction Test Final Dielectric (Er)	< 10
(Tex-144-E)	
Unconfined Compressive Strength after	≥ 80% Dry
the Tube Suction Test	UCS
Seismic Modulus	Report

All 4 failure modes found in current studies

Sample Preparation

Oven Cure Primed Sample for 3 days at 110°F


Tests Performed on Grade 5 Surface Treatment

MC-30 Prime, Grade 5 ST Mean Tensile Strength = 133 lb, Std Dev = 28 lb

No Prime, Grade 5 ST Mean Tensile Strength = 49 lb, Std Dev = 12 lb

Chapter 6 Pavement Design

- FPS Input values
- When to add new base
- Methods of handling project variability
- Methods of minimizing shrinkage cracking
- Methods of minimizing edge cracking
- Adding lateral support to pavement edge

FPS 19 Recommended DesignModuli Values for FDR ProjectsStabilizer
TypeField
Moduli
RangeDesign
Modulus
(ksi)Design
Poissons
RatioEmulsion100 - 3001000.30

150

60 - 200

100 - 600

70 - 300

Lime

Cement

Fly Ash

0.30

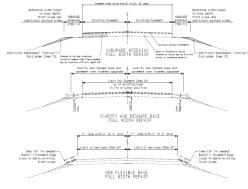
0.25

0.30

FPS and Triaxial Check Design
Values

	Table – Design Me	thod A		
Materials Description	FPS Design Modulus	Poisson Ratio	Cohesiometer Value	
-	Values		for TR. Check	
Existing Material	Backcalculated from	0.40	na	
(including subgrade)	FWD			
Existing Pavement	3 Times Subgrade	0.35	na	
Sacrified, Reshaped	Modulus			
Stabilized				
Existing/Subgrade				
 a) Most Granular Base (75% more base) 	a) 100 ksi	0.30	a) 800	
b) Blend Subgrade &	b) 65 ksi	0.30	b) 650	
Base (50 - 75% base)				
c) Mostly Subgrade				
(<50% base)	c) 35 ksi	0.35	c) 300	
Stabilized RAP/Existing				
Base; Max 50/50 Blend				
a) Cement	 a) 150 ksi 	a) 0.25	a) 1000	
b) Lime	b) 75 ksi	b) 0.30	b) 300	
c) Emulsion	c) 100 ksi	c) 0.30	c) 300	
d) Fly Ash	d) 75 ksi	d) 0.30	d) 300	
New Flexible Base over	70 ksi	0.35	na	
Stabilized Layer				
Note: Subject to Change				

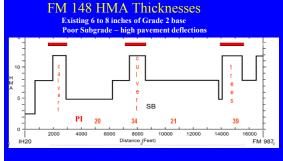
Extract from a Typical Design Report


I recommend reworking the existing material and widening the existing pavement to at least 24 feet then adding enough additional material to treat a 10" thick blend of existing and new material with 3% cement by weight.

Cement	Cement	Treat	Cement trt	Hot Mix	2" lift
\$/ton	\$/sy	\$/ <u>sy</u>	total \$/sy	\$/ton	\$/sy
\$ 110.00	\$ 1.55	\$ 3.30	\$ 4.84	\$ 61.00	6.71
Note: Cost is	Note: Cost is based on Houston District 12 month average low bids for Construction.			۱.	

Est. Unit Weight	125	pounds per cubic foot	rate placed	3.125	pounds/sf
Percent cement	3	percent	rate placed	0.0141	tons/sy
Treatment width	12	feet	Length per ton	53	feet

When to Place New Base over Treated Layer


- Thin pavement structure over poor subgrade treated layer to be a foundation/subbase layer
- Concerns about edge drying cracking flex base overlay will reduce cracking
- ADT more than 2000
- Inadequate depth of cover over subgrade from Texas Triaxial design
- Raising the pavement to improve drainage

SEQUENCE OF WORK FOR FULL WIDTH REPAIR

Additional Considerations in the Design Process

- Handling project thickness variability
 - Add new base over existing
 - Milling depth requirements
- Special Considerations
 - Micro-cracking
 - Use of Geogrids
 - Widening to add lateral support

- 1. No more than a 50/50 RAP Base Blend
- 2. Avoid cutting into subgrade
- 3. Recycling depth 8 inches

Design Recommendations Incorporated into Plans

From - To	Treatment
(feet)	
0 - 700	2 inch overlay only (new construction)
700 - 1800	Mill 4 inches of HMA the FDR 8 ins + base overlay
1800 - 3000	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
3000 - 6000	FDR 8" + base overlay
6300 - 7200	Mill 4 inches of HMA the FDR 8 ins + base overlay
7200 - 8900	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
8900 - 14000	Mill 4 inches of HMA the FDR 8 ins + base overlay
14000 - 15600	Mill 6" HMA add 4" new base; FDR 8" + Geogrid + base overlay
15600 - 16700	Mill 4 inches of HMA the FDR 8 ins + base overlay
16700 - end	2 inch HMA over only (intersection new construction)

Use of Micro-Cracking or Early Trafficking to Reduce Shrinkage Cracking Extent and Severity

- Early traffic or
- Heavy vibratory steel wheel roller after 1 -3 days
- Little long-term loss in strength
- reduction in amount and severity of cracks

Micro-Cracking

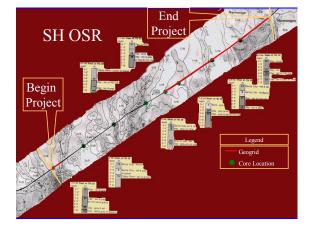
- 12 ton vibratory roller
- 1 2 days after placement
- Creep speed
- High amplitude
- 2 4 passes
- During set up test after 2 passes
- Wet section after cracking

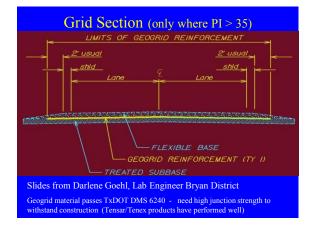
Control Testing

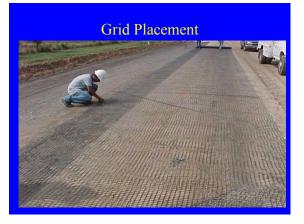
- Number of passes required to get a 40% reduction in stiffnes
- Stop after 2 and te
- Humboldt Geo-gauge
- Falling Weight
 Deflectometer
- PFWD
- Seismic
- Anything that will tell you if you have broken the slab

Micro-Cracking Influence on Crack Severity Low cost - No long-term damage to slab - lots of benefit

Wet Cured

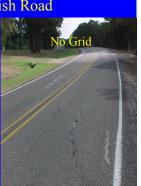

Causes of Longitudinal Cracking


- Subgrade Shrinkage associated with: – PI > 35
- Trees near edge
- Summer droughts
- Stiff bases



Current Bryan District Design Approach Darlene Goehl (2002)

- Define the limits of potential problem areas based on:
 - Soil borings at 0.5 mile intervals
 - Cross-reference to USDA maps
 - Analysis of structural strength data (FWD)
 - Drive section/input from Maintenance forces
- Combine all the information to define the limits of Geogrid reinforcement
- Geogrid introduces a slip plane to intercept cracks



Old Spanish Road

Adding Lateral Support by Shoulder Widening

	12 ft inside lane	12 ft outside lane	
	13° Exis	ting HMA	
·····»	12" Exist	ing Base	
	Existing G	avel Blend	
	FDR 10" and re	8° in outside lane. move offsite for pugmit houlder and place geo	I mbring. grid.
	Existing HMA		
1000	12" Existing Base	7" Existing Base	7" RAP/Base Blend
	Existing G	avel Blend	11" Drainable Base
	PI	10" RAP/Base Blend. ace 6" new HMA. de lane and place 2" 0	амнө.
	12 inside lane 9° Existing HMA	12 outside lane 21 OARS 41 TY B HMA 101 RAP/Base Blend	4' shoulder
	12" Existing Base	7" Existing Base	7" RAP/Base Blend
	Existing G	avel Blend	11" Drainable Base
			6" LTS

SECTION 7

Chapter 7 Construction Specifications Existing TxDOT Specifications

- Item 260 Lime Road Mixed
- Item 275 Cement Road Mixed
- Item 265 Fly Ash Road Mixed
- SS 3066 Asphalt Emulsions
- SS 3158 Foamed Asphalt (1993)

Typical Field Construction Sequence

Pulverization (Road Mixed)

- Initial
- 100% passing 2.5 in.
- After Mixing
 - Base
 - 100% pass 1.75 in.
 85% pass 0.75 in.
 - Subgrade
 - 60% pass No. 4

Time Limitation

Compaction with 2 hours of adding cement

Grading Requirements All Stabilizers

After shaping, before mixing

 Pulverize existing material so that 100% passes a 2.5 inch sieve

After Mixing	Base	Subgrade
 – <u>Sieve Size</u> 	<u>% Pass</u>	<u>%Pass</u>
– 1 ¾ in.	100	100
– ³ / ₄ in.	85	85
– No. 4		60

Application - Road Mixed

- Dry Placement
 - Bring Soil to OMCApply Cement or Lime
- Slurry
 - Continuous AgitationApply < 2 hrs of adding

Calculation of Application Rates

•		

Est. Unit Weight	125	pounds per cubic foot	rate placed	3.125	pounds/sf
Percent cement	3	percent	rate placed	0.0141	tons/sy
Treatment width	12	feet	Length per ton	53	feet

Application of Stabilizers (new in 2004 spec book)

	Dry	Slurry
Cement	x	х
Lime	х	х
Fly Ash	Х	

Childress Fly Ash Base Performance

- · Materials treated either sand/gravel or caliche
- Design use Tex 127 E to select Fly Ash content, spec says UCS at Priming Sand/gravel – straight AC-5 or CRS-1P
 Priming Caliche rework top 1 inch treat with dilute MS 2 emulsion

- One course surface treatment before final surfacing
- Design thickness with FPS 19
- Used on major roads US 287 excellent performance
- Back calculated modulus 200 300 ksi
- Details Ron Hatcher heavy involvement on each project •
- Caution good subgrades in District light rainfall

Compaction

• QC/QA system - Target 95% proctor – No more than 1 in 5 test fail

Sheep's Foot for Initial Compaction Steel Wheel for Finishing

Walking out of stabilized base

Mellowing + Compaction Requirements

	Mellowing Time	Compaction Time	Density 115-E
Cement	None	2 hours after application	95%
Lime (Hydrated)	1–4 days	After mellow	95% first 98% next
Lime (Quick)	2–4 days	After mellow	95% first 98% next
Fly Ash	None	6 hours after application	95% first 98% next

Curing

- 3 days sprinkling - Maintain no more than 2% below OMC
- Asphalt Membrane -0.1 to 0.2 gals sq yd

Curing Requirements (membrane curing as alternative)

Sprinkling (Item 2040)		
3 days		
2 days		
5 days		
1 day		
2 days drying before tack coat		

Spec says no traffic - conflicts with micro-cracking option

Road Mixed Asphalt Treatment

- Coats non-plastic base particles to achieve a level of water proofing
- · Typically used with granular and non-plastic material, like base course (PI ≤ 6)

- Can be a one pass operation
 - Not used widely in Texas Emulsions work very well in
 - Amarillo • Humidity/rainfall/clay contaminated problems in East Texas
 - Few Foamed asphalt since failure in Wichita Falls

Highway 20 Colusa California

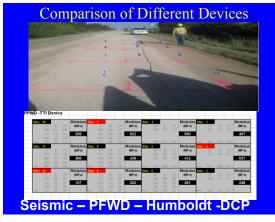
Highway 20, State of California 20 lane miles reconstructed & repaved in 20 days

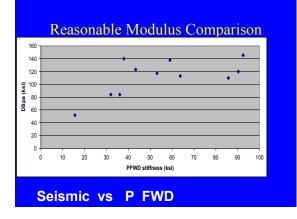
Emulsion Treated Bases Good Performance

- Contractor (Brown and Brown- John Huffman) design based on indirect tensile strength
- US 287 "treat top 8 inches of new base with CSS-1 emulsion, then 4 inches of type D and 2.5 inches of Type D"
- FWD Results
 - 2% 44 ksi (first project- performance problems)
 - 360 ksi (excellent early)
 - 6% 275 ksi (excellent early)
- District contacts Tom Nagel (Construction), several more projects planned

2002 Foamed Asphalt Warranty Project (Wichita Falls, Forensic Investigation after 1 Year)

Recycling project! Did not have the 10 inches of granular material on entire project – in some places mixed high PI clay with base

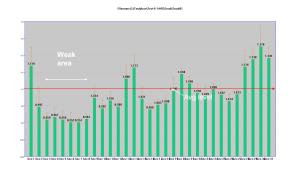

Strength Testing


- During Construction /Quality Control
 - Various stiffness devices · Stiffness changes rapidly in early days
- Intelligent compaction systems
 Strongly influenced by support
 After Construction/Quality Assurance
- Feedback to designersDifferent rates of strength gain with time

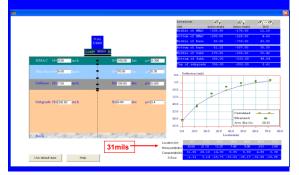
Alternative Base Testing Devices

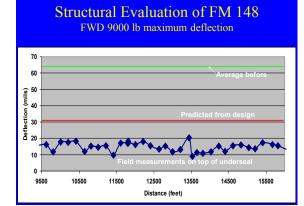
Device	Benefits	Drawbacks
PFWD	 Portable Linkable to design values Provides rapid results Already adopted for acceptance testing by some agencies 	May not correlate 1:1 with FWD Selection of target value may require calibration strip Requires supplementary moisture content test
DCP	 Simple, rugged and portable Already adopted for acceptance testing by some agencies Inexpensive 	Requires supplementary moisture content test Selection of target value may require calibration strip
PSPA	 Linkable to laboratory test results and design values Portable Provides rapid results 	 Load impulse very small Susceptible to errors if surface cracks exist Requires supplementary moisture content test
Instrumented Rolling	 Tests during compaction – results available immediately upon completion of rolling Provides full coverage results 	Link to surface layer properties questionable Not widely available Equipment is costly Requires calibration strip
FWD	 TxDOT's standard pavement assessment tool Linkable to design values Provides rapid results 	May not be available for every project Equipment is costly Requires supplementary moisture content test Stiffness partially dependent on quality of support

Comparison of E values in Day 3

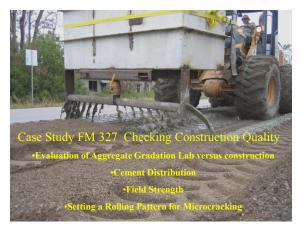

Location	PFWD (ksi)	Seismic	DCP
	(subgrade ksi)	(ksi)	(ksi)
2	92 (11 ksi)	145	65
7	90 (12 ksi)	120	73
9	31 (6 ksi)	84	43
12	15 (4.5 ksi)	52	30

Validation Testing


- Can be done, but difficult to set criteria
- FWD can be used to compare to design assumptions
- PSPA compare to lab values – Field values around 25% lab
- Issues
 - When to test stiffness changing rapidly
 - Moisture conditions curing underway


Instrumented Roller 100% Coverage Average Deflection per 40 ft Interval


Quality Assurance Testing Predicting Acceptable Pavement Deflections

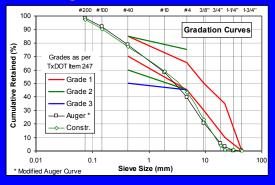


FWD Maximum Deflection Values Shortly after Construction Limits based on poor subgrade (6 kai) min flex base (30 kai) and 2 inches HMA

Questions ???

Summary of Project

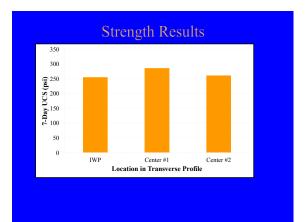
- \sim 5" existing ACP blended w/5" existing base
- ACP pulverized w/milling machine then blended w/base by rotomill in October 2008
- Cement slurry application (4%) initiated in November 2008



Gradation Investigation

- Auger versus Field construction Investigated
- Auger sampling technique extremely close to field production

Auger and Field Gradations



Application of Cement Slurry

- Produced by concrete plant and hauled in concrete trucks
- Each truck spread in two batches with a custom spreader box over a length of ~ 211'
- Concerns with uniformity of cement application rate across transverse profile
 - Field-molded samples from wheelpath and center for 7-day UCS
 - PFWD on 2-day old section along both transverse and longitudinal profiles

Slurry Application

PFWD Results Investigating Transverse vs Longitudinal Variability

- 8 measurements taken along centerline at 100' intervals
- 6 measurements taken across lane width at one station
- Variability of longitudinal versus transverse results evaluated

PFWD Analysis of Variability

Measurement Orientation	Average E1 (Mpa)	Standard Deviation (s)	Test Statistic	Coefficient of Variation (%)	Test Statistic
Longitudinal	1633	349	2.25	21.4	2.52
Transverse	989	534	2.35	54.1	2.53

•Test statistic = (larger variability/smaller variability) •F-critical value for # tests = 2.88 for 90% confidence •Data suggest no difference in variance or coefficient of variation between longitudinal and transverse E1 modulus values

Setting Micro-cracking Pattern

- Used PFWD before and after 2 passes at 8 different stations to evaluate E1 Modulus
- Target = at least 40% reduction in average value
- 2 passes achieved 41% reduction
 - Recommended 3 passes to ensure target gets consistently met

Conclusions from SH 327

- Auger samples used for lab mix design matched well with field construction
- Cement slurry application, after bugs worked out, seemed to work reasonably well
 - No evidence of greater variability across lane width as compared to variability with longitudinal distance
- 3 passes with roller recommended for micro-cracking

Fly Ash Basics

What is fly ash?

- ★ Fine residue from combustion of coal, by-product of a coal-fired electrical generation plant
- \star 80% of fly ash produced is disposed, 20% reclaimed
- \bigstar Cementing characteristics vary widely with source test each source with project base materials

Types of fly ash

★Type F

- ★ Produced from bituminous or anthracite coal (East Texas, Eastern US) ★ Pozzolonic in presence of water will combine with available lime to produce cementitious material ★ Light to dark gray color

★Type C

- * Produced from subbituminous or ignite coal (Wyoming)
 * Both pozzolonic and cementitious forms cementitious material by adding water
- ★ Tan or buff color

SH 87 Beaumont Summary

- One 1 core in 6 solid
- Back calculated modulus of base 40 to 70 ksi
- Concerns about delayed compaction in high rainfall areas
- Not appropriate if need to traffic section early

Highway 20 Colusa California CIR with Foamed Asphalt

Typical condition of pavement prior to Foam Recycling 2001 Traffic, > 5000 vpd, 20% Heavy Trucks

Recycling Results

Construction July 2001

April 2004